TABLE III. Values of experimental parameters for 2024-T351 aluminum.

	Parameters		Low-velocity flying plates	High-velocity flying plates	ě.	Ι.,
1 9	Flyer plate velocity (cm/µsec)	Y . V . I . Y . I	0.125	0.33		8
	Peak stress (Mbar)	with the	0.110	0.345		
	Sound speed, c (cm/µsec)*		0.80 ± 0.02	0.93±0.05		
	Sound speed, c (cm/µsec)b		0.81	• • •		
	G (Mbar)		0.54±0.07	0.59 ± 0.25		
	K (Mbar)		1.27	2.28		
	$\sigma_e - \sigma_f$ (Mbar)		0.025	0.065		
	$Y_e + Y_f$ (Mbar)		0.013 ± 0.008	0.025 ± 0.008		
	Coordinate of point M, Fig. 2		5.5	4.5		
	Flyer plate thickness (cm)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.32 (nominal)	0.32 (nominal)		

um projectile uminum target hickness 0.322 e velocity 0.125

d with the

n in Fig. 8.

ninum pro-

nite target.

at intervals

parameters

the elasto-

the elastic

essure wave

he particle

ons. Figure

le velocity

eristic code

wo sets of

esults when

used. Ex-

ported ex-

ofiles of stress

Eq. (6)]. From Eq. (5) the elastic sound speed is

$$c^2 = d\sigma/d\rho = V(K + 4G/3) = FV,$$
 (12)

where F is called the longitudinal elastic modulus and V is the specific volume. Experiments with flyer plates give values of both c and V, so that F may be calculated. The dependence of F on the stress can be determined if experimental data are available at two or more stress levels. Replacing K with -VdP/dV there results

$$G = 3(F - K)/4 = 3(\rho c^2 + VdP/dV)/4.$$
 (13)

The quantity dP/dV must first be approximated by $d\sigma_H/dV$ where σ_H is on the upper, or Hugoniot, curve of Fig. 6. Then the variables G, F, and K can be evaluated by using experimentally related values of V and c.

Equation (10) now becomes

$$\sigma_e - \sigma_f = (Y_e + Y_f) (K + \frac{4}{3}G)/2G,$$
 (14)

Fig. 9. Peak particle velocity in aluminum target hit by an aluminum projectile.

or by use of Eq. (12)

$$Y_e + Y_f = 1.5[1 - (K/\rho c^2)](\sigma_e - \sigma_f),$$
 (15)

where K can be approximated as explained above. It was expected that the experiments which give V and c for an elastic wave would also give, at least approximately, values of $(\sigma_e - \sigma_f)$, so that the value of $(Y_e + Y_f)$ could be calculated. Once these values are known as, say, functions of the volume, Eq. (3) can be used to construct a tentative hydrostat, so that another approximation can be made for dP/dV, and the process of calculating G and $(Y_e + Y_f)$ can be repeated. Because the experiments fail to show a definite separation

Fig. 10. Shear modulus G and yield stress Y vs specific volume V.

e1

Poisson's with stress a different tions [see

ss-strain

Fluid

model
0.0
0.0
2.785
0.765
1.66
0.428

^a Aluminum free-surface velocity vs depth measurements.

^b Immersed-foil water-gauge measurement.